The symbolism of stone work-axes (based on material from the Daugava Basin)

Andrius Vasks

The simple stone axes called ‘work-axes’ represent one of the most characteristic artefact categories of the Early Metal Period. These have been found in settlement site excavations and occasionally at burial sites, but the great majority are stray finds. Although the number of finds of simple stone axes from the territory of Latvia is considerable, so far they have not been treated in detail. The most extensive description was published by J. Graudonis in 1967 (Graudonis, 1967, c. 82-84). My interest in stone work axes was aroused in the course of research on the settlement pattern of the Daugava Basin and changes in this settlement pattern in the Bronze and Early Iron Age.

Of all stray finds of stone artefacts, which include maceheads, maceheads, celts and grindstones, shaft-hole axes form the most numerous group. A proportion of these axes can be classified as battle-axes. These are generally from 11–12 to 17–18 cm in length. On the whole, the battle-axes are very carefully made and symmetric, which gives some foundation for the view that their significance was more symbolic than practical (Lone, 1996, 34, lpp.). Battle-axes are characteristic of the Late Neolithic, but derived forms, i.e. axes that have lost some of the features mentioned, may be dated to the Early Bronze Age.

It is quite difficult to determine the number of battle-axes found in Latvia, because a strict boundary cannot be drawn between axes showing all of the characteristic features and those axes that have largely lost these features. If only the former are included, i.e. so-called early battle-axes, the number is reckoned as 20–30 (Lone, 1996, p. 34). The chapter in the book Archaeology of the Latvian SSR on the Late Neolithic gives a figure of 120, evidently including late battle-axe forms (LA, 1974, p. 48). In the Daugava Basin around 30 such axes might be added.

Whatever the number of axes included as battle-axes, depending on the various features considered, it is considerably smaller than the number of simple stone axes. These are smaller than the battle-axes: about 70% are 6–12 cm in length. The simple axes tend to lack a carefully formed body – they are often asymmetric and less carefully made. The simplicity of the form and the markedly broadened blade permits them to be regarded as tools, and in consequence they are referred to as work-axes (LA, p. 81).

In terms of find circumstances, work axes may be divided into two groups. The first includes axes found at Early Metal Period living sites – hillforts and open settlements. Hillforts have been more extensively excavated than open settlements, and the number of work-axes finds at hillforts is accordingly greater. Thus, Doles Kivukalns hillfort produced 98 whole and fragmentary axes (Fig. 1:1–4, 30 were found at Kokneses Mūkūkalns, 26 at Iedru Brikulj, 11 at Lievārides Dievkalns and four at Katkalska Līķukalns. Single stone axes and axe fragments have also been found at several other excavated hillforts where habitation began in the Early Metal Period (Daugavale, Aste, Madalani and others). There are also isolated finds of axes and axe fragments from open settlements such as Kerkiži, Vilmāni I, Plāteri etc. (Bucks, 1991, p. 130–134). It should be emphasised that settlement sites produce mainly fragments of broken axes, intact examples being rare. On the other hand, grave inventories from the Early Metal Period are very poor and often entirely absent. Out of about 30 excavated Early Metal Period cemeteries in Latvia, only Salaspils Reizniece has produced two stone axes: one of these is a rare form – a double-bladed axe, the other being a work-axe (Graudonis, 1961, p. 35, tab. I: 10, 24). Altogether, excavation of settlement sites in the Daugava Basin has produced about 200 work-axes, mainly in a broken state. Stray finds of work-axes represent a second group. Most commonly they are found in fields in the course of ploughing or harvesting, less commonly during other digging work – while digging ditches, potato pits, foundations etc. Recovered by non-specialists, these axes usually are not accompanied by a detailed account of the find circumstances. For most of the finds of stone axes that reach museums we know only the name of the
farmstead or village in whose land or fields they have been found. Only occasionally is the find-spot recorded more precisely, within the limits of a particular farmstead. For a proportion of stone axes, we have only the name of the parish or former estate.

This article deals with 598 stray finds of work-axes from the Daugava Basin. For 448 we have the name of the farm or village where they were discovered, but 150 have only the name of the parish. This figure does not include 11 axes found at hillforts that have not been excavated and can thus only nominally be classed as stray finds. These figures indicate that stone work-axes are quite common finds. Accordingly, the total number of axes can only be estimated, since there is no doubt that a significant number of such finds have not ended up in museums. The archive of the Archaeology Department of the Latvian History Museum has numerous records mentioning stone axes found on farmsteads, but later lost. Also, quite a large number of these axes are still kept in country schools, having been brought by pupils, and serve as teaching aids.

The problem of dating stray finds of stone work-axes can be resolved by making use of similar finds from excavated sites. Most of the stone shaft-hole axes from the more extensively excavated Late Neolithic and Early Bronze Age settlement sites in the Lubāna Plain, most notably the Aboara site (Jone, 1979, p. 69, tab. XVII–XIX), can be classified as battle-axes in terms of their form. However, this site has also produced a couple of stone axe fragments corresponding in form to simple work-axes. Work-axes are widely represented among finds from early hillforts. Since these hillforts were inhabited in the Late Bronze and Earliest Iron Age, i.e. in the 1st millennium BC, these chronological limits can also be taken to apply to the work-axes obtained as stray finds. Taking into account the finds from Late Neolithic/Early Bronze Age settlements and from Late Bronze Age/Earliest Iron Age hillforts, we may conclude that simple work-axes began to spread at the end of the Late Neolithic or at the beginning of the Bronze Age. They were most widely used in the Late Bronze Age, and began to disappear with the introduction of iron axes at the end of the Earliest Iron Age, i.e. in the final quarter of the 1st millennium BC.

The wide distribution of simple work-axes and their considerable number in the Bronze Age can evidently be explained in terms of a growing practical need for such implements. The Bronze Age was the time when, along with stock-keeping, agriculture also became more important. Since the work-axes characteristic of the Bronze Age have mostly been found in the ploughsoil of fields, there is good reason to consider that they were used to cut trees and bushes in the course of clearance for agriculture.

In this paper I would like to touch on a question that has so far not been the subject of attention: this is the question: how did these axes end up in the place where they have been discovered?

There is no foundation for considering these stray finds of axes as belonging to the inventories of graves that have been destroyed, since at the find-spots, numbering in the hundreds, bones of burials have never been found, nor have other artefacts that might have come from grave inventories. Also, as already mentioned, stone axes are not characteristic finds at the excavated Bronze Age burials. In certain cases stone axe finds might be explained by the presence of an open settlement.

Since there are quite a large number of broken axes among the stray finds, it has been suggested that they were broken in use and were abandoned as worthless fragments at the working location, i.e. in the plot being cleared. However, intact axes considerably outnumber broken ones. Thus, in Riga County, out of 119 axes from the Daugava Basin 94 were intact and only 25 were fragments of work-axes. In Jēkabpils County, 103 out of 136 axes were intact and 33 were broken. (These figures are approximate, since in several cases the stone axe finds are known only from archive records and the condition of the find cannot be established with certainty)

Since the intact work-axes considerably outnumber the broken ones, there is no foundation for considering that they could have been lost accidentally in the course of clearance work (Graudonis, Urāns, 1961, p. 144). Although the production of a shaft-hole axe did not take a whole human lifetime, as was thought in the 19th century, experiments have shown that, depending on the hardness of the stone, production of an axe would have required 10–30 hours (Malīņa, Malīņa, 1988, p. 140). Thus, a stone axe was quite a valuable item, not readily left unretrieved if it were to fly off the haft.

We may assume that after a long period of use, in the course of which the axes were regularly sharpened by grinding the blade and thus changing the form of the axe (shifting the centre of balance, symmetry etc.), they gradually lost their effectiveness as tools and were in the end discarded as useless. This has not been tested experimentally, but is supported by the fact that there are among the axe finds a considerable proportion of unworn examples in very good condition.
role of a talisman or amulet and were deliberately left in the ancient fields in order to protect them from the influence of hostile forces.

It is hard to say what the attitude was towards stone axes found in the Iron Age. In this connection, two stray finds should be mentioned. One of these is an Augszeeme type axe found in Aipuri village of Krišļava Parish, made from black fine-grained stone. One face of the blade has a 3.3 cm long groove (LVM, A:1065). The other find is a celt from Līgulti in Durbes Parish with similar grooves on both faces (LM, 11847). Such grooves are also characteristic of Early and Middle Iron Age striking-flint tools. Evidently, in the Iron Age these stone axes had been adapted to serve a new function – striking fire. Does this show the practical nature of the Iron Age inhabitants in using accidentally discovered apparently 1000 years-old stone objects for their everyday needs? Do such examples not indicate a special attitude too? Perhaps already at that time these axes were regarded as magical objects of celestial origin ("thunderballs")? If so, their use for striking fire would seem particularly appropriate.

That people in the Iron Age paid attention to ancient stone objects is suggested by finds of such objects in settlement sites that do not have signs of occupation prior to the Iron Age. Thus, for example, two stone-shale work-axes and a celt were found in excavations at Loxolote hillfort (Mugurēvičs, 1977, p.60, fig.42). Two stone axes were found on the hillfort even before excavation. Since the excavation did not produce other convincing evidence of habitation in the Early Metal Period (such as pottery), it may be suggested that these axes were used in the Iron Age – not serving household needs, but rather for magical purposes.

LITERATURE


LM = Collection of Liepāja Museum.
LVM = Archaeological collection of the History Museum of Latvia.

Šmits P., 1940. Latviedu tautas tiecībā. 1. Rīga.


Šmits P., 1940. Latviedu tautas tiecībā. 1. Rīga.


Šmits P., 1940. Latviedu tautas tiecībā. 1. Rīga.


Šmits P., 1940. Latviedu tautas tiecībā. 1. Rīga.

Family groups at Netta cemetery.
From studies on horizontal stratigraphy

Anna Bittner-Wróblewska

1. INTRODUCTION

The grave and barrow field at Netta, site I, district Augustów, province Podlaskie, although awaiting comprehensive publication early in 2004 has enjoyed a relatively wide circulation in literature (Okulicz, 1955; Koczanowski, 1966; 1981; 1991; Koczanowski et al., 1987; Bittner-Wróblewska, 2001b; 2002). The rich body of evidence from Netta was examined in various studies concerned largely with refining the chronology of the Roman and the Migrations Period (Godłowski, 1970; 1974) and others, developing the typology of specific categories of finds from the Barbaricum (beads – Tempelmann-Maatzka, 1985; buckles – Małyda-Legutko, 1987). Nevertheless, source material from Netta continues to hold considerable appeal for various kinds of research, including the study of context on the borderline of archaeology and sociology, previously only rarely addressed by archaeologists concerned with the Baltic environment (cf. Czarnecka, 1990). This approach is taken in the present study, in which evidence from Netta is examined to gain insight into the structure of the local community, its evolution and internal relationships. Such analysis is made possible by the size of the cemetery, its 218 cremation graves (nos 1 to 177) and two equine inhumations making it one of the largest grave fields investigated in the southern area of Baltic settlement.

As a first step a detailed analysis was made of the chronology of individual graves at Netta and of horizontal stratigraphy of the burial ground. Next, grave goods were analysed for the presence and the frequency of different categories of finds in individual assemblages to determine the quantity and the richness of grave furnishings. Substantial difference in grave goods recorded in Baltic environment suggests that they reflected the social status of the buried individual. Finally, additional insight on social structure of the users of the cemetery at Netta was sought by analysing the presence in grave inventories of objects understood to mark the social prestige of the buried individual.

The question of prestige objects has been little studied with regard to the Baltic environment (cf. Bittner-Wróblewska, 2001a, p. 121–127). Some inspiration may be drawn from similar research dealing with Germanic tribes (cf. Ringved, 1991, p. 59–61, fig. 27; von Carnap-Bornheim, Hilkjar, 1996; Borsche, 1998, p. 205–222). Although the two environments differed in many respects, just to mention gold artefacts, altogether absent in Baltic graves, prominent in Germanic graves as important indicators of high social status, other elements may be safely accepted as interregional marks of prestige, namely, horse riding equipment and weaponry. The distinctive status of the mounted warrior among barbarians is unmistakable (cf. Næsgård Jørgensen, 1991). A key criterion for determining whether a given category belongs in the group of marks of prestige is its frequency in grave inventories, as competently demonstrated by a Scandinavian archaeologist (cf. Jørgensen, 1990, p. 63).

Various ornaments with enamelled details, featuring among the contents of female and male graves alike, presumably also had a special significance. This category, characteristic for an extensive territory of central-eastern Europe from the close of the Early Roman until the Migrations period (Bittner-Wróblewska, 1992, with a list of previous literature), is greatly heterogeneous, with many pieces made on individual commission. Exceptionally attractive ornaments of this type may have served as local marks of social prestige. Another category useful for displaying personal wealth may presumably be the fine